skip to main content

SciTech ConnectSciTech Connect

Title: Doping concentration driven morphological evolution of Fe doped ZnO nanostructures

In this paper, systematic study of structural, vibrational, and optical properties of undoped and 1-10 at.% Fe doped ZnO nanostructures, synthesized adopting chemical precipitation route, has been reported. Prepared nanostructures were characterized employing an assortment of microscopic and spectroscopic techniques, namely Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) Spectroscopy, X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), Micro-Raman Spectroscopy (μRS), and UV-visible and Photoluminescence (PL) spectroscopy. With Fe incorporation, a gradual morphological transformation of nanostructures is demonstrated vividly through SEM/TEM characterizations. Interestingly, the morphology of nanostructures evolves with 1–10 at. % Fe doping concentration in ZnO. Nanoparticles obtained with 1 at. % Fe evolve to nanorods for 3 at. % Fe; nanorods transform to nanocones (for 5 at. % and 7 at. % Fe) and finally nanocones transform to nanoflakes at 10 at. % Fe. However, at all these stages, concurrence of primary hexagonal phase of Zn{sub 1-x}Fe{sub x}O along with the secondary phases of cubic ZnFe{sub 2}O{sub 4} and rhombohedric Fe{sub 2}O{sub 3}, is revealed through XRD analysis. Based on collective XRD, SEM, TEM, and EDX interpretations, a model for morphological evolution of nanostructures was proposed and the pivotal role of Fe dopant was deciphered.more » Furthermore, vibrational properties analyzed through Raman and FTIR spectroscopies unravel the intricacies of formation and gradual enhancement of secondary phases with increased Fe concentration. UV-visible and PL spectroscopic analyses provided further insight of optical processes altering with Fe incorporation. The blue shift and gradual quenching of visible photoluminescence with Fe doping was found in accordance with structural and vibrational analyses and explicated accordingly.« less
Authors:
;  [1] ; ;  [2] ;  [3]
  1. Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida-201307 (India)
  2. CIICAp-UAEM, Av. Universidad 1001, Col Chamilpa, Cuernavaca 62209 (Mexico)
  3. Centro de Investigación en Materiales Avanzados, S. C., CIMAV, Av. Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Chihuahua 31109 (Mexico)
Publication Date:
OSTI Identifier:
22308189
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 116; Journal Issue: 16; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; DOPED MATERIALS; EVOLUTION; FERRITES; FOURIER TRANSFORMATION; INFRARED SPECTRA; IRON OXIDES; NANOPARTICLES; NANOSTRUCTURES; OPTICAL PROPERTIES; PHOTOLUMINESCENCE; PRECIPITATION; RAMAN SPECTROSCOPY; SCANNING ELECTRON MICROSCOPY; TRANSMISSION ELECTRON MICROSCOPY; X RADIATION; X-RAY DIFFRACTION; ZINC COMPOUNDS; ZINC OXIDES