skip to main content

SciTech ConnectSciTech Connect

Title: Luminescence of silicon dioxide different polymorph modification: Silica glass, α-quartz, stishovite, coesite

Stishovite, coesite, oxygen deficient silica glass as well as irradiated α-quartz, exhibit two luminescence bands: a blue one and an UV one both excitable in the range within optical gap. There are similarities in spectral position and in luminescence decay kinetics among centers in these materials. The interpretation was done on the model of Oxygen Deficient Centers (ODC) [1]. The ODC(II) or twofold coordinated silicon and ODC(I) are distinguished. ODC(I) is object of controversial interpretation. The Si-Si oxygen vacancy [2] and complex defect including latent twofold coordinated silicon [3] are proposed. Remarkably, this luminescence center does not exist in as grown crystalline α-quartz. However, destructive irradiation of α-quartz crystals with fast neutrons, γ rays, or dense electron beams [4–6] creates ODC(I) like defect. In tetrahedron structured coesite the self trapped exciton (STE) luminescence observed with high energetic yield (∼30%) like in α-quartz crystals. STE in coesite coexists with oxygen deficient-like center. In octahedron structured stishovite STE was not found and only ODC exists.
Authors:
 [1]
  1. Institute of Solid State Physics, University of Latvia, LV-1063 Riga (Latvia)
Publication Date:
OSTI Identifier:
22308115
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1624; Journal Issue: 1; Conference: SIO2014: 10. international symposium on SiO2, advanced dielectrics and related devices, Cagliari (Italy), 16-18 Jun 2014; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; CRYSTALS; ELECTRON BEAMS; EMISSION SPECTRA; EXCITONS; FAST NEUTRONS; GLASS; IRRADIATION; LUMINESCENCE; NEUTRON FLUENCE; PHYSICAL RADIATION EFFECTS; QUARTZ; SILICON; SILICON OXIDES; STISHOVITE; TRAPPING; VACANCIES