skip to main content

Title: Effect of calcination temperature on microstructure and magnetic properties of Ni{sub 0.5}Zn{sub 0.25}Cu{sub 0.25} Fe{sub 2}O{sub 4} nanoparticles synthesized by sol-gel method

This paper examines the effect of calcination process on the structural and magnetic properties material nanostructure composite of Ni{sub 0Ð}œ‡{sub 5}Zn{sub 0Ð}œ‡{sub 25}Cu{sub 0.25} Fe{sub 2}O{sub 4} ferrites. The samples were successfully prepared by sol-gel method at different calcination temperature, which are 600°C, 700°C, 800°C and 900°C. Morphological investigation, average crystallite size and microstructure of the material were examined by using X-ray diffraction (XRD) and confirmed by high resolution transmission electron microscope (HRTEM) and field emission scanning electron microscope (FESEM). The effects of calcination temperature on the magnetic properties were calculated by using vibrating sample magnetometer (VSM). The XRD result shows single-phase cubic spinel structure with interval average size 5.9-38 nm, and grain size microstructure of the material was increasing with temperature increases. The highest magnetization saturation was reached at a temperature 800°C with value 53.89 emu/g, and the value coercive force (Hc) was inversely with the grain size.
Authors:
;  [1] ;
  1. Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)
Publication Date:
OSTI Identifier:
22308079
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1621; Journal Issue: 1; Conference: ICSAS 2014: 3. international conference on fundamental and applied sciences: Innovative research in applied sciences for a sustainable future, Kuala Lumpur (Malaysia), 3-5 Jun 2014; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND NANOTECHNOLOGY; CALCINATION; COERCIVE FORCE; COPPER COMPOUNDS; FERRITES; FIELD EMISSION; GRAIN SIZE; MAGNETIC PROPERTIES; MAGNETIZATION; NANOPARTICLES; NANOSTRUCTURES; NIOBIUM COMPOUNDS; SCANNING ELECTRON MICROSCOPY; SOL-GEL PROCESS; TRANSMISSION ELECTRON MICROSCOPY; VIBRATING SAMPLE MAGNETOMETERS; X-RAY DIFFRACTION; ZINC COMPOUNDS