skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of the chemical treatments on the characteristics of natural cellulose

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4897115· OSTI ID:22307894
; ;  [1]; ;  [2]
  1. Department of Physics, Faculty of Mathematics and Natural of Sciences, Gadjah Mada University, Yogyakarta 55281 (Indonesia)
  2. Nanomaterials Research Group, Integrated Research and Testing Laboratory (LPPT), Gadjah Mada University, Yogyakarta 55281, Indonesia and Department of Physics, Faculty of Mathematics and Natural of Sciences, Gadjah Mada University, Yogyakarta 55281 (Indonesia)

In order to characterize the morphology and size distribution of the cellulose fibers, natural cellulose from kenaf bast fibers was extracted using two chemical treatments; (1) alkali-bleaching-ultrasonic treatment and (2) alkali-bleaching-hydrolysis. Solutions of NaOH, H{sub 2}O{sub 2} and H{sub 2}SO{sub 4} were used for alkalization, bleaching and hydrolysis, respectively. The hydrolyzed fibers were centrifuged at a rotation speed of 10000 rpm for 10 min to separate the nanofibers from the microfibers. The separation was repeated in 7 steps by controlling pH of the solution in each step until neutrality was reached. Fourier transform infrared (FTIR) spectroscopy was performed on the fibers at the final step of each treatment: i.e. either ultrasonic treated- or hydrolyzed microfibers. Their FTIR spectra were compared with FTIR spectrum of a reference commercial α-cellulose. Changes in morphology and size distribution of the treated fibers were examined by scanning electron microscopy (SEM). FTIR spectra of ultrasonic treated- and hydrolyzed microfibers nearly coincided with the FTIR spectrum of commercial α-cellulose, suggesting successful extraction of cellulose. Ultrasonic treatment for 6 h resulted in a specific morphology in which cellulose nanofibers (≥100 nm) were distributed across the entire surface of cellulose microfibers (∼5 μm). Constant magnetic stirring combined with acid hydrolysis resulted in an inhomogeneous size distribution of both cellulose rods (500 nm-3 μm length, 100–200 nm diameter) and particles 100–200 nm in size. Changes in morphology of the cellulose fibers depended upon the stirring time; longer stirring time resulted in shorter fiber lengths.

OSTI ID:
22307894
Journal Information:
AIP Conference Proceedings, Vol. 1617, Issue 1; Conference: ICTAP 2013: 3. international conference on theoretical and applied physics, Malang, East Java (Indonesia), 10-11 Oct 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English