skip to main content

SciTech ConnectSciTech Connect

Title: Renormalization of a two-loop neutrino mass model

We analyze the renormalization group structure of a radiative neutrino mass model consisting of a singly charged and a doubly charged scalar fields. Small Majorana neutrino masses are generated by the exchange of these scalars via two-loop diagrams. We derive boundedness conditions for the Higgs potential and show how they can be satisfied to energies up to the Planck scale. Combining boundedness and perturbativity constraints with neutrino oscillation phenomenology, new limits on the masses and couplings of the charged scalars are derived. These in turn lead to lower limits on the branching ratios for certain lepton flavor violating (LFV) processes such as μ→eγ, μ→3e and μ – e conversion in nuclei. Improved LFV measurements could test the model, especially in the case of inverted neutrino mass hierarchy where these are more prominent.
Authors:
 [1] ;  [2]
  1. Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States)
  2. Fisika LIPI, Kompleks Puspiptek Serpong, Tangerang 15310, Indonesia and Jožef Stefan Institute, Jamova Cesta 39, 1001 Ljubljana (Slovenia)
Publication Date:
OSTI Identifier:
22306236
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1604; Journal Issue: 1; Conference: PPC 2013: 7. international conference on interconnections between particle physics and cosmology, Lead-Deadwood, SD (United States), 24 Jun - 6 Jul 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Publisher:
AIP
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BRANCHING RATIO; FLAVOR MODEL; HIGGS BOSONS; HIGGS MODEL; MASS; NEUTRINO OSCILLATION; NEUTRINOS; NUCLEI; POTENTIALS; RENORMALIZATION; SCALAR FIELDS