skip to main content

Title: Adaptive AFM scan speed control for high aspect ratio fast structure tracking

Improved imaging rates in Atomic Force Microscopes (AFM) are of high interest for disciplines such as life sciences and failure analysis of semiconductor wafers, where the sample topology shows high aspect ratios. Also, fast imaging is necessary to cover a large surface under investigation in reasonable times. Since AFMs are composed of mechanical components, they are associated with comparably low resonance frequencies that undermine the effort to increase the acquisition rates. In particular, high and steep structures are difficult to follow, which causes the cantilever to temporarily loose contact to or crash into the sample. Here, we report on a novel approach that does not affect the scanner dynamics, but adapts the lateral scanning speed of the scanner. The controller monitors the control error signal and, only when necessary, decreases the scan speed to allow the z-piezo more time to react to changes in the sample's topography. In this case, the overall imaging rate can be significantly increased, because a general scan speed trade-off decision is not needed and smooth areas are scanned fast. In contrast to methods trying to increase the z-piezo bandwidth, our method is a comparably simple approach that can be easily adapted to standard systems.
Authors:
; ;  [1]
  1. Department of Microelectronic and Nanoelectronic Systems, Faculty of Electrical Engineering and Information Technology Ilmenau University of Technology, Gustav-Kirchhoffstr. 1, 98684 Ilmenau (Germany)
Publication Date:
OSTI Identifier:
22306224
Resource Type:
Journal Article
Resource Relation:
Journal Name: Review of Scientific Instruments; Journal Volume: 85; Journal Issue: 10; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; ASPECT RATIO; ATOMIC FORCE MICROSCOPY; CONTROL; RESONANCE; SEMICONDUCTOR MATERIALS; SIGNALS; TOPOGRAPHY; TOPOLOGY