skip to main content

SciTech ConnectSciTech Connect

Title: Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle

The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.
Authors:
 [1]
  1. Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze (Italy)
Publication Date:
OSTI Identifier:
22306200
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Mathematical Physics; Journal Volume: 55; Journal Issue: 8; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BOLTZMANN STATISTICS; DIFFERENTIAL EQUATIONS; DIFFUSION; ELECTRONS; ENTROPY; FERMI STATISTICS; GRAPHENE