skip to main content

SciTech ConnectSciTech Connect

Title: A squeeze-like operator approach to position-dependent mass in quantum mechanics

We provide a squeeze-like transformation that allows one to remove a position dependent mass from the Hamiltonian. Methods to solve the Schrödinger equation may then be applied to find the respective eigenvalues and eigenfunctions. As an example, we consider a position-dependent-mass that leads to the integrable Morse potential and therefore to well-known solutions.
Authors:
;  [1] ;  [2]
  1. Instituto Nacional de Astrofísica, Óptica y Electrónica, Calle Luis Enrique Erro No. 1, Santa María Tonantzintla, San Andrés Cholula, Puebla CP 72840 (Mexico)
  2. CREOL/College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816-2700 (United States)
Publication Date:
OSTI Identifier:
22306080
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Mathematical Physics; Journal Volume: 55; Journal Issue: 8; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; EIGENFUNCTIONS; EIGENVALUES; HAMILTONIANS; MASS; MATHEMATICAL SOLUTIONS; MORSE POTENTIAL; QUANTUM MECHANICS; SCHROEDINGER EQUATION