skip to main content

Title: Quasi-static displacement calibration system for a “Violin-Mode” shadow-sensor intended for Gravitational Wave detector suspensions

This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect “Violin-Mode” (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a “synthesized split photodiode” detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC “shadow notch” outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing “jitter” at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration,more » across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm.« less
Authors:
;  [1]
  1. SUPA (Scottish Universities Physics Alliance), Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG (United Kingdom)
Publication Date:
OSTI Identifier:
22305913
Resource Type:
Journal Article
Resource Relation:
Journal Name: Review of Scientific Instruments; Journal Volume: 85; Journal Issue: 10; Other Information: (c) 2014 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; CALIBRATION; FIBERS; GRAVITATIONAL WAVE DETECTORS; INFRARED RADIATION; INTERFEROMETERS; LASERS; MIRRORS; PHOTODIODES; PHOTON BEAMS; RESONANCE; SENSITIVITY; SENSORS; SILICA; SUSPENSIONS