skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Analytical model of electron transport in polycrystalline, degenerately doped ZnO films

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4896839· OSTI ID:22305791
;  [1]
  1. Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Solar Fuels, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany)

An analytical description of the charge carrier transport, valid for non-degenerated and degenerated semiconductors, was developed, critically reviewed, and fitted to the temperature-dependent Hall mobility data of magnetron sputtered, degenerately doped ZnO:Al films. Our extended model for grain boundary scattering in semiconductors of arbitrary degeneracy is based on previous models from literature and suitable to describe the Hall mobility of the carriers as a function of the free carrier concentration and the temperature at the same time. It is mathematically simple enough for a fast fit procedure, which is not possible with most of the previous models. Applying a combined transport model consisting of ionized impurity scattering, phonon scattering, and grain boundary scattering in degenerate semiconductors, we were able to determine the trap density at the grain boundaries Nₜ ≈ 3×10¹³ to 5×10¹³cm⁻² and the deformation potential E{sub ac} in the range of 5 eV to 9 eV depending on the details of the transport model.

OSTI ID:
22305791
Journal Information:
Journal of Applied Physics, Vol. 116, Issue 14; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English