skip to main content

Title: Ge{sub 1-y}Sn{sub y} (y = 0.01-0.10) alloys on Ge-buffered Si: Synthesis, microstructure, and optical properties

Novel hydride chemistries are employed to deposit light-emitting Ge{sub 1-y}Sn{sub y} alloys with y ≤ 0.1 by Ultra-High Vacuum Chemical Vapor Deposition (UHV-CVD) on Ge-buffered Si wafers. The properties of the resultant materials are systematically compared with similar alloys grown directly on Si wafers. The fundamental difference between the two systems is a fivefold (and higher) decrease in lattice mismatch between film and virtual substrate, allowing direct integration of bulk-like crystals with planar surfaces and relatively low dislocation densities. For y ≤ 0.06, the CVD precursors used were digermane Ge₂H₆ and deuterated stannane SnD₄. For y ≥ 0.06, the Ge precursor was changed to trigermane Ge₃H₈, whose higher reactivity enabled the fabrication of supersaturated samples with the target film parameters. In all cases, the Ge wafers were produced using tetragermane Ge₄H₁₀ as the Ge source. The photoluminescence intensity from Ge{sub 1–y}Sn{sub y}/Ge films is expected to increase relative to Ge{sub 1–y}Sn{sub y}/Si due to the less defected interface with the virtual substrate. However, while Ge{sub 1–y}Sn{sub y}/Si films are largely relaxed, a significant amount of compressive strain may be present in the Ge{sub 1–y}Sn{sub y}/Ge case. This compressive strain can reduce the emission intensity by increasing the separation between themore » direct and indirect edges. In this context, it is shown here that the proposed CVD approach to Ge{sub 1–y}Sn{sub y}/Ge makes it possible to approach film thicknesses of about 1 μm, for which the strain is mostly relaxed and the photoluminescence intensity increases by one order of magnitude relative to Ge{sub 1–y}Sn{sub y}/Si films. The observed strain relaxation is shown to be consistent with predictions from strain-relaxation models first developed for the Si{sub 1–x}Ge{sub x}/Si system. The defect structure and atomic distributions in the films are studied in detail using advanced electron-microscopy techniques, including aberration corrected STEM imaging and EELS mapping of the average diamond–cubic lattice.« less
Authors:
;  [1] ; ; ; ;  [2] ;  [3]
  1. Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 (United States)
  2. Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States)
  3. LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, Arizona 85287-1704 (United States)
Publication Date:
OSTI Identifier:
22305744
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 116; Journal Issue: 13; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ALLOYS; BUFFERS; CHEMICAL VAPOR DEPOSITION; CRYSTAL DEFECTS; CRYSTALS; CUBIC LATTICES; DISLOCATIONS; ELECTRON MICROSCOPY; FILMS; GERMANIUM COMPOUNDS; GERMANIUM HYDRIDES; LIGHT EMITTING DIODES; MICROSTRUCTURE; OPTICAL PROPERTIES; PHOTOLUMINESCENCE; RELAXATION; SILICON; SUBSTRATES; THICKNESS; TIN COMPOUNDS