skip to main content

Title: On the local electronic and atomic structure of Ce1-xPrxO2-δ epitaxial films on Si

The local electronic and atomic structure of (111)-oriented, single crystalline mixed Ce1-xPrxO2-δ (x = 0, 0.1 and 0.6) epitaxial thin films on silicon substrates have been investigated in view of engineering redox properties of complex oxide films. Non-destructive X-ray absorption near edge structure reveals that Pr shows only +3 valence and Ce shows only nominal +4 valence in mixed oxides. Extended x-ray absorption fine structure (EXAFS) studies were performed at K edges of Ce and Pr using a specially designed monochromator system for high energy measurements. They demonstrate that the fluorite lattice of ceria (CeO₂) is almost not perturbed for x = 0.1 sample, while higher Pr concentration (x = 0.6) not only generates a higher disorder level (thus more disordered oxygen) but also causes a significant reduction of Ce–O interatomic distances. The valence states of the cations were also examined by techniques operating in highly reducing environments: scanning transmission electron microscopy-electron energy loss spectroscopy and X-ray photoemission spectroscopy; in these reducing environments, evidence for the presence of Ce³⁺ was clearly found for the higher Pr concentration. Thus, the introduction of Pr³⁺ into CeO₂ strongly enhances the oxygen exchange properties of CeO₂. This improved oxygen mobility properties of CeO₂ aremore » attributed to the lattice disorder induced by Pr mixing in the CeO₂ fluorite lattice, as demonstrated by EXAFS measurements. Thus, a comprehensive picture of the modifications of the atomic and electronic structure of Ce1-xPrxO2-δ epitaxial films and their relation is obtained.« less
Authors:
; ;  [1] ;  [2] ;  [1] ;  [3] ;  [2] ;  [4]
  1. IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany)
  2. Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali, Operative Group in Grenoble, c/o European Synchrotron Radiation Facility, B.P. 220, 38043 Grenoble (France)
  3. (Germany)
  4. (Italy)
Publication Date:
OSTI Identifier:
22305700
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 116; Journal Issue: 12; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ABSORPTION; ABSORPTION SPECTROSCOPY; CARRIER MOBILITY; CERIUM IONS; CERIUM OXIDES; CONCENTRATION RATIO; ELECTRONIC STRUCTURE; ENERGY-LOSS SPECTROSCOPY; EPITAXY; FINE STRUCTURE; MONOCRYSTALS; PHOTOEMISSION; PRASEODYMIUM IONS; PRASEODYMIUM OXIDES; SILICON; SUBSTRATES; THIN FILMS; TRANSMISSION ELECTRON MICROSCOPY; X-RAY SPECTROSCOPY