skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the densification of cubic ZrO{sub 2} nanocondensates by capillarity force and turbostratic C–Si–H multiple shell

Journal Article · · Journal of Solid State Chemistry
 [1];  [2];  [1]
  1. Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC (China)
  2. Department of Mechanical and Automation Engineering, I-Shou University, Kaohsiung 84001, Taiwan, ROC (China)

A turbostratic C–Si–H lamellar phase with 0.35–0.39 nm interspacing and ZrO{sub 2} condensates having cubic (c), tetragonal and monoclinic structures stabilized by increasing particle size were synthesized by pulsed laser ablation on Zr plate in TEOS and characterized by X-ray/electron diffraction and optical spectroscopy. The c-ZrO{sub 2} phase ca. 10% denser than the ambient lattice was stabilized as 3–10 nm sized cubo-octahedral nanoparticles but as abnormal large-sized (up to 30 nm) ones when encapsulated by the C{sub 1−x}Si{sub x}:H multiple shell with defective graphite-like structure units to exert an effective compressive stress. The potential application of such core–shell nanostructure with enhanced binding of Zr and O ions and implication for natural dynamic occurrence of the C{sub 1−x}Si{sub x}:H phase are addressed. - Graphical abstract: Lattice image of a typical cubic-ZrO{sub 2} particle densified by the turbostratic Si{sub x}C{sub 1−x}:H shell. Highlights: ► Turbostratic C–Si–H lamellar phase and ZrO{sub 2} condensates were synthesized by PLA. ► The c-ZrO{sub 2} phase ca. 10% denser than the ambient lattice was stabilized as 3–10 nm. ► The c-ZrO{sub 2} particles up to 30 nm were densified when encapsulated by the C{sub 1−x}Si{sub x}:H multiple shell. ► Tight ion binding of the c-ZrO{sub 2} due to capillarity force and turbostratic shell.

OSTI ID:
22304549
Journal Information:
Journal of Solid State Chemistry, Vol. 200; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English