skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controlled synthesis and formation mechanism of monodispersive lanthanum vanadate nanowires with monoclinic structure

Journal Article · · Journal of Solid State Chemistry
 [1]; ; ; ;  [1];  [2]
  1. School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China)
  2. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China)

Monodisperse LaVO{sub 4} nanowires with relatively high aspect ratio larger than 50 have been prepared by a one-step solvothermal synthesis. This method provides a simple, inexpensive, controllable and reproducible process to produce LaVO{sub 4} nanowires with an average diameter of 15 nm and a high aspect ratio. The as-synthesized products have been characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and fast Fourier transform spectroscopy (FFT), indicative of a well-crystalline monoclinic structure and ascendant nanowire-morphology. The formation mechanism is suggested that oriented attachment plays a vital role in the growth of LaVO{sub 4} nanowires, which recommends a favorable route to fabricate similar morphological and structural nanometer materials. - Graphical abstract: The formation of LaVO{sub 4} nanowires is attributed to oriented attachment, a combination of nanocrystallites through their suitable surface planes, that is, with the same crystallographic orientations of [−120]. Highlights: ► Monodisperse LaVO{sub 4} nanowires with high aspect ratio have been prepared solvothermally without any templates. ► The morphology and structure of LaVO{sub 4} nanowires were characterized by XRD, SEM, TEM techniques. ► The formation mechanism of LaVO{sub 4} nanowires is suggested that oriented attachment plays a vital role.

OSTI ID:
22304542
Journal Information:
Journal of Solid State Chemistry, Vol. 200; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English