skip to main content

Title: Photolysis of CH{sub 3}CHO at 248 nm: Evidence of triple fragmentation from primary quantum yield of CH{sub 3} and HCO radicals and H atoms

Radical quantum yields have been measured following the 248 nm photolysis of acetaldehyde, CH{sub 3}CHO. HCO radical and H atom yields have been quantified by time resolved continuous wave Cavity Ring Down Spectroscopy in the near infrared following their conversion to HO{sub 2} radicals by reaction with O{sub 2}. The CH{sub 3} radical yield has been determined using the same technique following their conversion into CH{sub 3}O{sub 2}. Absolute yields have been deduced for HCO radicals and H atoms through fitting of time resolved HO{sub 2} profiles, obtained under various O{sub 2} concentrations, to a complex model, while the CH{sub 3} yield has been determined relative to the CH{sub 3} yield from 248 nm photolysis of CH{sub 3}I. Time resolved HO{sub 2} profiles under very low O{sub 2} concentrations suggest that another unknown HO{sub 2} forming reaction path exists in this reaction system besides the conversion of HCO radicals and H atoms by reaction with O{sub 2}. HO{sub 2} profiles can be well reproduced under a large range of experimental conditions with the following quantum yields: CH{sub 3}CHO + hν{sub 248nm} → CH{sub 3}CHO{sup *}, CH{sub 3}CHO{sup *} → CH{sub 3} + HCO ϕ{sub 1a} = 0.125 ± 0.03, CH{sub 3}CHO{sup *} → CH{sub 3} + H + CO ϕ{sub 1e} =more » 0.205 ± 0.04, CH{sub 3}CHO{sup *}→{sup o{sub 2}}CH{sub 3}CO + HO{sub 2} ϕ{sub 1f} = 0.07 ± 0.01. The CH{sub 3}O{sub 2} quantum yield has been determined in separate experiments as ϕ{sub CH{sub 3}} = 0.33 ± 0.03 and is in excellent agreement with the CH{sub 3} yields derived from the HO{sub 2} measurements considering that the triple fragmentation (R1e) is an important reaction path in the 248 nm photolysis of CH{sub 3}CHO. From arithmetic considerations taking into account the HO{sub 2} and CH{sub 3} measurements we deduce a remaining quantum yield for the molecular pathway: CH{sub 3}CHO{sup *} → CH{sub 4} + CO ϕ{sub 1b} = 0.6. All experiments can be consistently explained with absence of the formerly considered pathway: CH{sub 3}CHO{sup *} → CH{sub 3}CO + H ϕ{sub 1c} = 0.« less
Authors:
; ;  [1] ;  [1] ;  [2]
  1. Université Lille Nord de France, PhysicoChimie des Processus de Combustion et de l’Atmosphère – PC2A, UMR 8522, F-59650 Villeneuve d’Ascq (France)
  2. (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba (Argentina)
Publication Date:
OSTI Identifier:
22304268
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 140; Journal Issue: 21; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ACETALDEHYDE; ATOMS; CARBON MONOXIDE; CONCENTRATION RATIO; CONVERSION; METHANE; METHYL IODIDE; PHOTOLYSIS; RADICALS; SPECTROSCOPY; TIME RESOLUTION; YIELDS