skip to main content

SciTech ConnectSciTech Connect

Title: Diamagnetic drift effects on the low-n magnetohydrodynamic modes at the high mode pedestal with plasma rotation

The diamagnetic drift effects on the low-n magnetohydrodynamic instabilities at the high-mode (H-mode) pedestal are investigated in this paper with the inclusion of bootstrap current for equilibrium and rotation effects for stability, where n is the toroidal mode number. The AEGIS (Adaptive EiGenfunction Independent Solutions) code [L. J. Zheng and M. T. Kotschenreuther, J. Comp. Phys. 211 (2006)] is extended to include the diamagnetic drift effects. This can be viewed as the lowest order approximation of the finite Larmor radius effects in consideration of the pressure gradient steepness at the pedestal. The H-mode discharges at Jointed European Torus is reconstructed numerically using the VMEC code [P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)], with bootstrap current taken into account. Generally speaking, the diamagnetic drift effects are stabilizing. Our results show that the effectiveness of diamagnetic stabilization depends sensitively on the safe factor value (q{sub s}) at the safety-factor reversal or plateau region. The diamagnetic stabilization are weaker, when q{sub s} is larger than an integer; while stronger, when q{sub s} is smaller or less larger than an integer. We also find that the diamagnetic drift effects also depend sensitively on the rotation direction. The diamagnetic stabilization inmore » the co-rotation case is stronger than in the counter rotation case with respect to the ion diamagnetic drift direction.« less
Authors:
; ;  [1]
  1. Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)
Publication Date:
OSTI Identifier:
22304240
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 6; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; BOOTSTRAP CURRENT; EIGENFUNCTIONS; H-MODE PLASMA CONFINEMENT; JET TOKAMAK; LARMOR RADIUS; MATHEMATICAL SOLUTIONS; PLASMA; PRESSURE GRADIENTS; SAFETY; STABILITY; STABILIZATION