skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Phase transformation, improved ferroelectric and magnetic properties of (1 − x) BiFeO{sub 3}–xPb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} solid solutions

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4882067· OSTI ID:22304151
; ;  [1]; ; ;  [2]
  1. Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)
  2. Advanced Materials and Processes Research Institute, CSIR, Bhopal 462026 (India)

The authors prepared (1 − x)BiFeO{sub 3} – (x)Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} for x ≤ 0.30 by sol-gel method and investigated the material's structures, magnetic and electrical properties. Detailed Rietveld analysis of X-ray diffraction data revealed that the system retains distorted rhombohedral R3c structure for x ≤ 0.10 but transforms to monoclinic (Cc) structure for x > 0.10. Disappearance of some Raman modes corresponding to A1 modes and the decrease in the intensities of the remaining A1 modes with increasing x in the Raman spectra, which is a clear indication of structural modification and symmetry changes brought about by PZT doping. Enhanced magnetization with PZT doping content may be attributed to the gradual change and destruction in the spin cycloid structure of BiFeO{sub 3.} The leakage current density at 3.5 kV/cm was reduced by approximately three orders of magnitude by doping PZT (x = 0.30), compared with BFO ceramics.

OSTI ID:
22304151
Journal Information:
Journal of Applied Physics, Vol. 115, Issue 22; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English