skip to main content

SciTech ConnectSciTech Connect

Title: Ambipolar and non-ambipolar diffusion in an rf plasma source containing a magnetic filter

By placing a magnetic filter across a rectangular plasma source (closed at one end with a ceramic plate and an rf antenna, and terminated at the opposite end by a grounded grid), we experimentally investigate the effect of conducting and insulating source walls on the nature of the plasma diffusion phenomena. The use of a magnetic filter creates a unique plasma, characterized by a high upstream electron temperature (T{sub e{sub u}}∼5 eV) near the rf antenna and a low downstream electron temperature (T{sub e{sub d}}∼1 eV) near the grid, which more clearly demonstrates the role of the source wall materials. For conducting walls a net ion current to ground is measured on the grid, and the plasma potential is determined by a mean electron temperature within the source. For insulating walls the plasma potential is determined by the downstream electron temperature (i.e., V{sub p}∼5.2T{sub e{sub d}} in argon), and the net current to the grid is exactly zero. Furthermore, by inserting a small additional upstream conductor (that can be made floating or grounded through an external circuit switch), we demonstrate that the plasma potential can be controlled and set to a low (V{sub p}∼5.2T{sub e{sub d}}), or high (V{sub p}∼5.2T{sub e{sub u}})more » value.« less
Authors:
 [1] ;  [2] ;  [1]
  1. Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France)
  2. (France)
Publication Date:
OSTI Identifier:
22304058
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 6; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; AMBIPOLAR DIFFUSION; ANTENNAS; ARGON; ELECTRON TEMPERATURE; MAGNETIC FILTERS; PLASMA; PLASMA POTENTIAL; THERMONUCLEAR REACTOR MATERIALS