skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: D{sup 0} magnetism in Ca doped narrow carbon nanotubes: First principle chirality effect study

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4882756· OSTI ID:22304022
;  [1]
  1. Faculty of Physics, Isfahan University of technology, 84156-83111 Isfahan (Iran, Islamic Republic of)

Curvature has always had crucial effects on the physical properties of narrow carbon nanotubes (CNTs) and here spin-polarized density functional calculations were employed to study electronic and magnetic properties of calcium-decorated narrow (5,5) and (9,0)CNTs with close diameters (∼7 Å) and different chiralities. Our results showed that chirality had great impact on the electronic structure and magnetization of the doped CNTs. In addition, internally or externally doping of the calcium atoms was studied comparatively and although for the (9,0)CNT the internal doping was the most stable configuration, which involves a novel kind of spin-polarization originated from Ca-4s electrons, but for the (5,5)tube the external doping was the most stable one without any spin-polarization. On the other hand, calcium doping in the center of the (5,5)CNT was an endothermic process and led to the spin-polarization of unoccupied Ca-3d orbitals via direct exchange interaction between adjacent Ca atoms. In the considered systems, the existence of magnetization in the absence of any transition-metal elements was an example of valuable d{sup 0} magnetism title.

OSTI ID:
22304022
Journal Information:
Journal of Applied Physics, Vol. 115, Issue 23; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English