skip to main content

Title: High-performance solar-blind ultraviolet photodetector based on mixed-phase ZnMgO thin film

High Mg content mixed-phase Zn{sub 0.38}Mg{sub 0.62}O was deposited on a-face sapphire by plasma-assisted molecular beam epitaxy, based on which a metal-semiconductor-metal solar-blind ultraviolet (UV) photodetector was fabricated. The dark current is only 0.25 pA at 5 V, which is much lower than that of the reported mixed-phase ZnMgO photodetectors. More interestingly, different from the other mixed-phase ZnMgO photodetectors containing two photoresponse bands, this device shows only one response peak and its −3 dB cut-off wavelength is around 275 nm. At 10 V, the peak responsivity is as high as 1.664 A/W at 260 nm, corresponding to an internal gain of ∼8. The internal gain is mainly ascribed to the interface states at the grain boundaries acting as trapping centers of photogenerated holes. In view of the advantages of mixed-phase ZnMgO photodetectors over single-phase ZnMgO photodetectors, including easy fabrication, high responsivity, and low dark current, our findings are anticipated to pave a new way for the development of ZnMgO solar-blind UV photodetectors.
Authors:
 [1] ;  [2] ; ; ; ; ; ; ;  [3]
  1. Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China)
  2. (China)
  3. State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, 130033 Changchun (China)
Publication Date:
OSTI Identifier:
22303932
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 105; Journal Issue: 1; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; CURRENTS; FABRICATION; GAIN; GRAIN BOUNDARIES; HOLES; INTERFACES; MAGNESIUM COMPOUNDS; METALS; MOLECULAR BEAM EPITAXY; OXYGEN COMPOUNDS; PHOTODETECTORS; PLASMA; SAPPHIRE; SEMICONDUCTOR MATERIALS; SOLAR RADIATION; THIN FILMS; TRAPPING; ULTRAVIOLET RADIATION; ZINC COMPOUNDS