skip to main content

Title: Evolution of the electron energy distribution function during genesis of breakdown plasma

During the process of plasma initiation by an electromagnetic wave, it is found that the electron energy distribution function (EEDF) that is initially Maxwellian with the most probable energy at room temperature, evolves with time and tends toward a Bi-Maxwellian – indicating attainment of thermodynamic equilibrium in the individual electron populations prior to breakdown, with a significant increase in hot electron density. In the intermediate states during the evolution, however, non-equilibrium processes are prevalent under fast pulse excitation and the EEDF initially exhibits substantial deviation from a Maxwellian. An analysis of the deviation has been carried out by optimizing the residual sum of squares of the probabilities obtained from the simulation and a fitted Maxwellian curve. The equilibrium regain time defined as the time required to attain thermodynamic equilibrium again, is investigated as a function of neutral pressure, wave electric, and external magnetostatic fields.
Authors:
; ;  [1]
  1. Department of Physics, Indian Institute of Technology – Kanpur, Kanpur 208016 (India)
Publication Date:
OSTI Identifier:
22303754
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 8; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; BREAKDOWN; DISTRIBUTION FUNCTIONS; ELECTROMAGNETIC RADIATION; ELECTRON DENSITY; ELECTRONS; ENERGY SPECTRA; EQUILIBRIUM; INTERMEDIATE STATE; OPTIMIZATION; PLASMA; SIMULATION