skip to main content

Title: Development of a dual MCP framing camera for high energy x-rays

Recently developed diagnostic techniques at LLNL require recording backlit images of extremely dense imploded plasmas using hard x-rays, and demand the detector to be sensitive to photons with energies higher than 50 keV [R. Tommasini et al., Phys. Phys. Plasmas 18, 056309 (2011); G. N. Hall et al., “AXIS: An instrument for imaging Compton radiographs using ARC on the NIF,” Rev. Sci. Instrum. (these proceedings)]. To increase the sensitivity in the high energy region, we propose to use a combination of two MCPs. The first MCP is operated in a low gain regime and works as a thick photocathode, and the second MCP works as a high gain electron multiplier. We tested the concept of this dual MCP configuration and succeeded in obtaining a detective quantum efficiency of 4.5% for 59 keV x-rays, 3 times larger than with a single plate of the thickness typically used in NIF framing cameras.
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;  [1] more »; « less
  1. Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
Publication Date:
OSTI Identifier:
22303690
Resource Type:
Journal Article
Resource Relation:
Journal Name: Review of Scientific Instruments; Journal Volume: 85; Journal Issue: 11; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; CAMERAS; COMPTON EFFECT; HARD X RADIATION; KEV RANGE; LAWRENCE LIVERMORE NATIONAL LABORATORY; MICROCHANNEL ELECTRON MULTIPLIERS; PHOTOCATHODES; PHOTONS; QUANTUM EFFICIENCY; SENSITIVITY; X-RAY RADIOGRAPHY