skip to main content

SciTech ConnectSciTech Connect

Title: Improved foilless Ku-band transit-time oscillator for generating gigawatt level microwave with low guiding magnetic field

An improved foilless Ku-band transit-time oscillator with low guiding magnetic field is proposed and investigated in this paper. With a non-uniform buncher and a coaxial TM{sub 02} mode dual-resonant reflector, this improved device can output gigawatt level Ku-band microwave with relatively compact radial dimensions. Besides the above virtue, this novel reflector also has the merits of high TEM reflectance, being more suitable for pre-modulating the electron beam and enhancing the conversion efficiency. Moreover, in order to further increase the conversion efficiency and lower the power saturation time, a depth-tunable coaxial collector and a resonant cavity located before the extractor are employed in our device. Main structure parameters of the device are optimized by particle in cell simulations. The typical simulation result is that, with a 380 kV, 8.2 kA beam guided by a magnetic field of about 0.6 T, 1.15 GW microwave pulse at 14.25 GHz is generated, yielding a conversion efficiency of about 37%.
Authors:
; ; ; ;  [1]
  1. College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)
Publication Date:
OSTI Identifier:
22303656
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 9; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; EFFICIENCY; ELECTRON BEAMS; GHZ RANGE 01-100; MAGNETIC FIELDS; MICROWAVE RADIATION; OSCILLATORS; PULSES; SIMULATION