skip to main content

Title: Potential formation in a collisionless plasma produced in an open magnetic field in presence of volume negative ion source

The electric potential near a wall for a multi-species plasma with volume produced negative ions in presence of axially varying magnetic field is studied following an analytical-numerical approach. A constant negative ion source is assumed throughout the plasma volume, along with finite temperature positive ions and Boltzmann electrons. The particles are assumed to be guided by an open magnetic field that has its maximum at the centre, and field strength decreasing towards the walls. The one dimensional (1D) Poisson equation is derived using an analytical approach, and then solved numerically to study the potential profiles. Effect of (a) negative ion production rate, (b) magnetic field profile, and (c) negative ion temperature on the potential profile has been investigated. A potential peak appears near the wall when the negative ion temperature and density are sufficiently high. Also, the presence of negative ions further decreases the potential in the plasma region for a finite Debye Length (λ{sub D})
Authors:
; ;  [1]
  1. Centre of Plasma Physics, Institute for Plasma Research Sonapur, Kamrup (M), Assam 782402 (India)
Publication Date:
OSTI Identifier:
22303602
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 8; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ANIONS; CATIONS; COLLISIONLESS PLASMA; DEBYE LENGTH; ELECTRONS; MAGNETIC FIELDS; POISSON EQUATION; POTENTIALS