skip to main content

Title: Biexcitons formed from spatially separated electrons and holes in quasi-zero-dimensional semiconductor nanosystems

A theory of biexcitons (formed from spatially separated electron and holes) in nanosystems that consist of zinc-selenide quantum dots synthesized in borosilicate glassy matrices is developed. The dependences of the total energy and the binding energy of the singlet ground biexciton state in such a system on the spacing between the quantum-dot surfaces and the quantum-dot radius are derived by the variational method. It is shown that biexciton formation is of the threshold character and possible in nanosystems, in which the spacing between the quantum-dot surfaces is larger than a certain critical spacing.
Authors:
 [1]
  1. National Academy of Sciences of Ukraine, Kurdyumov Institute for Metal Physics (Ukraine)
Publication Date:
OSTI Identifier:
22300418
Resource Type:
Journal Article
Resource Relation:
Journal Name: Semiconductors; Journal Volume: 47; Journal Issue: 12; Other Information: Copyright (c) 2013 Pleiades Publishing, Ltd.; http://www.springer-ny.com; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; ELECTRONS; QUANTUM DOTS; SEMICONDUCTOR MATERIALS; SURFACES