skip to main content

Title: Enhancing e-waste estimates: Improving data quality by multivariate Input–Output Analysis

Highlights: • A multivariate Input–Output Analysis method for e-waste estimates is proposed. • Applying multivariate analysis to consolidate data can enhance e-waste estimates. • We examine the influence of model selection and data quality on e-waste estimates. • Datasets of all e-waste related variables in a Dutch case study have been provided. • Accurate modeling of time-variant lifespan distributions is critical for estimate. - Abstract: Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lack of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input–Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used tomore » apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies.« less
Authors:
 [1] ;  [2] ;  [1] ;  [2] ;  [3] ;  [1] ;  [2]
  1. Institute for Sustainability and Peace, United Nations University, Hermann-Ehler-Str. 10, 53113 Bonn (Germany)
  2. (Netherlands)
  3. Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft (Netherlands)
Publication Date:
OSTI Identifier:
22300322
Resource Type:
Journal Article
Resource Relation:
Journal Name: Waste Management; Journal Volume: 33; Journal Issue: 11; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; DATA PROCESSING; DATASETS; ELECTRONIC EQUIPMENT; INPUT-OUTPUT ANALYSIS; MULTIVARIATE ANALYSIS; NETHERLANDS; RELIABILITY; SIMULATION; WASTE MANAGEMENT; WASTES