skip to main content

SciTech ConnectSciTech Connect

Title: Motion of the plasma critical layer during relativistic-electron laser interaction with immobile and comoving ion plasma for ion acceleration

We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a{sub 0}>1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-β traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary.
Authors:
 [1]
  1. Department of Electrical Engineering, Duke University, Durham, North Carolina 27708 (United States)
Publication Date:
OSTI Identifier:
22300290
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 5; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ACCELERATION; ACCELERATORS; ELECTRONS; LASER RADIATION; LASERS; LAYERS; LIGHT IONS; MOMENT OF INERTIA; OPACITY; PLASMA DENSITY; POTENTIALS; RADIATION PRESSURE; RANDOM PHASE APPROXIMATION; RELATIVISTIC RANGE; VELOCITY