skip to main content

SciTech ConnectSciTech Connect

Title: Stepped-frequency continuous-wave microwave-induced thermoacoustic imaging

Microwave-induced thermoacoustic (TA) imaging combines the dielectric contrast of microwave imaging with the resolution of ultrasound imaging. Prior studies have only focused on time-domain techniques with short but powerful microwave pulses that require a peak output power in excess of several kilowatts to achieve sufficient signal-to-noise ratio (SNR). This poses safety concerns as well as to render the imager expensive and bulky with requiring a large vacuum radio frequency source. Here, we propose and demonstrate a coherent stepped-frequency continuous-wave (SFCW) technique for TA imaging which enables substantial improvements in SNR and consequently a reduction in peak power requirements for the imager. Constructive and destructive interferences between TA signals are observed and explained. Full coherency across microwave and acoustic domains, in the thermo-elastic response, is experimentally verified and this enables demonstration of coherent SFCW microwave-induced TA imaging. Compared to the pulsed technique, an improvement of 17 dB in SNR is demonstrated.
Authors:
;  [1]
  1. Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)
Publication Date:
OSTI Identifier:
22300094
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 104; Journal Issue: 22; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; DIELECTRIC MATERIALS; IMAGES; INTERFERENCE; MICROWAVE RADIATION; PULSE TECHNIQUES; RADIOWAVE RADIATION; REDUCTION; RESOLUTION; SIGNAL-TO-NOISE RATIO; ULTRASONIC WAVES