skip to main content

Title: Enhancing controllability and stability of bottom-gated graphene thin-film transistors by passivation with methylamine

This paper is intended to aid to bridge the gap between chemistry and electronic engineering. In this work, the fabrication of chemical vapour deposited graphene field-effect transistors employing silicon-nitride (Si{sub 3}N{sub 4}) gate dielectric is presented, showing originally p-type channel conduction due to ambient impurities yielding uncontrollable behaviour. Vacuum annealing has been performed to balance off hole and electron conduction in the channel, leading to the observation of the Dirac point and therefore improving controllability. Non-covalent functionalisation by methylamine has been performed for passivation and stability reasons yielding electron mobility of 4800 cm{sup 2}/V s and hole mobility of 3800 cm{sup 2}/V s as well as stabilised controllable behaviour of a bottom-gated transistor. The introduction of interface charge following the non-covalent functionalisation as well as the charge balance have been discussed and analysed.
Authors:
 [1]
  1. London Centre for Nanotechnology, University College London, 17-19 Gordon Street, WC1H 0AH London, United Kingdom and Centre for Advanced Photonics and Electronics, Department of Engineering, Cambridge University, 9 J J Thomson Avenue, CB3 0HE Cambridge (United Kingdom)
Publication Date:
OSTI Identifier:
22300078
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 104; Journal Issue: 22; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ANNEALING; BALANCES; CHEMICAL VAPOR DEPOSITION; COVALENCE; DIELECTRIC MATERIALS; ELECTRON MOBILITY; FIELD EFFECT TRANSISTORS; GRAPHENE; HOLE MOBILITY; IMPURITIES; INTERFACES; METHYLAMINE; PASSIVATION; SILICON NITRIDES; STABILITY; THIN FILMS