skip to main content

SciTech ConnectSciTech Connect

Title: Investigation of stopping power for deuterons in partially ionized warm Al plasmas

The stopping powers for deuterons in Al plasmas with a fixed density of 0.02 g/cm{sup 3} and the temperatures at 4.5, 13, and 17 eV are studied in detail for a wide projectile energy range with different models. Comparison of these models indicates that our model is totally in best agreement with the experimental data and the main reason for this is that our calculation for the inelastic processes should be the most reliable. It is found that the difference between our model and the local density approximation model (Wang et al., Phys. Plasmas 5, 2977 (1998)) is mainly due to the quite different physical picture behind them. In Mehlhorn's model (J. Appl. Phys. 52, 6522 (1981)), the Bethe equation is found to overestimate the inelastic stopping in Al plasmas, meanwhile, it is gradually close to our results with temperature decreasing. The model by classical dielectric function with the choice of the maximum of the momentum transfer associated with the temperature is found not suitable to describe the stopping in warm plasmas. With temperature increasing the stopping due to plasma wave rises up which rapidly exceeds the inelastic stopping in warm Al plasmas.
Authors:
;  [1]
  1. Data center for high energy density physics research, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)
Publication Date:
OSTI Identifier:
22299982
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 6; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; APPROXIMATIONS; DEUTERONS; EV RANGE 10-100; MOMENTUM TRANSFER; PLASMA WAVES; STOPPING POWER