skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor

Journal Article · · AIP Advances
DOI:https://doi.org/10.1063/1.4889878· OSTI ID:22299866
; ; ; ; ; ;  [1]
  1. State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi'an, Shaanxi 710024 China (China)

The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 μm CMOS technology. The flux of neutron beams was about 1.33 × 10{sup 8} n/cm{sup 2}s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 × 10{sup 11}, 5 × 10{sup 11}, and 1 × 10{sup 12} n/cm{sup 2}, respectively. The mean dark signal (K{sub D}), dark signal spike, dark signal non-uniformity (DSNU), noise (V{sub N}), saturation output signal voltage (V{sub S}), and dynamic range (DR) versus neutron fluence are investigated. The degradation mechanisms of CMOS APS image sensors are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from CMOS APS image sensors irradiated by neutrons are presented to investigate the generation of dark signal spike.

OSTI ID:
22299866
Journal Information:
AIP Advances, Vol. 4, Issue 7; Other Information: (c) 2014 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 2158-3226
Country of Publication:
United States
Language:
English