skip to main content

SciTech ConnectSciTech Connect

Title: Charge carrier transport mechanisms in perovskite CdTiO{sub 3} fibers

Electrical transport properties of electrospun cadmium titanate (CdTiO{sub 3}) fibers have been investigated using ac and dc measurements. Air annealing of as spun fibers at 1000 °C yielded the single phase perovskite fibers having diameter ∼600 nm - 800 nm. Both the ac and dc electrical measurements were carried out at temperatures from 200 K – 420 K. The complex impedance plane plots revealed a single semicircular arc which indicates the interfacial effect due to grain boundaries of fibers. The dielectric properties obey the Maxwell-Wagner theory of interfacial polarization. In dc transport study at low voltages, data show Ohmic like behavior followed by space charge limited current (SCLC) with traps at higher voltages at all temperatures (200 K – 420 K). Trap density in our fibers system is N{sub t} = 6.27 × 10{sup 17} /cm{sup 3}. Conduction mechanism in the sample is governed by 3-D variable range hopping (VRH) from 200 K – 300 K. The localized density of states were found to be N(E{sub F}) = 5.51 × 10{sup 21} eV{sup −1} cm{sup −3} at 2 V. Other VRH parameters such as hopping distance (R{sub hop}) and hopping energy (W{sub hop}) were also calculated. In the high temperature rangemore » of 320 K – 420 K, conductivity follows the Arrhenius law. The activation energy found at 2 V is 0.10 eV. Temperature dependent and higher values of dielectric constant make the perovskite CdTiO{sub 3} fibers efficient material for capacitive energy storage devices.« less
Authors:
; ;  [1]
  1. Micro and Nano Devices Group, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, 45650 (Pakistan)
Publication Date:
OSTI Identifier:
22299863
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Advances; Journal Volume: 4; Journal Issue: 6; Other Information: (c) 2014 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ACTIVATION ENERGY; ANNEALING; CADMIUM; CHARGE CARRIERS; DENSITY; ELECTRIC POTENTIAL; ENERGY STORAGE; FIBERS; GRAIN BOUNDARIES; PERMITTIVITY; PEROVSKITE; POLARIZATION; SPACE CHARGE; TEMPERATURE DEPENDENCE; TITANATES