skip to main content

Title: Phase-mixing of Langmuir oscillations in cold electron-positron-ion plasmas

Space-time evolution of Langmuir oscillations in a cold homogeneous electron-positron-ion plasma has been analyzed by employing a straightforward perturbation expansion method, showing phase-mixing and, thus, wave-breaking of excited oscillations at arbitrary amplitudes. Within an assumption of infinitely massive ions, an approximate phase-mixing time is found to scale as ω{sub pe}t{sub mix}∼[(6/δ{sup 2})((2−α){sup 5/2}/(1−α))]{sup 1/3}, where “δ” and “α” (= n{sub 0i}/n{sub 0e}) are the amplitude of perturbation and the ratio of equilibrium ion density to equilibrium electron density, respectively, and ω{sub pe}∼√(4πn{sub 0e}e{sup 2}/m) is the electron plasma frequency. The results presented on phase-mixing of Langmuir modes in multispecies plasmas are expected to be relevant to laboratory and astrophysical environments.
Authors:
 [1]
  1. Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)
Publication Date:
OSTI Identifier:
22299823
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 7; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; AMPLITUDES; APPROXIMATIONS; ASTROPHYSICS; DISTURBANCES; ELECTRON DENSITY; ELECTRONS; EQUILIBRIUM; ION DENSITY; IONS; LANGMUIR FREQUENCY; MIXING; PERTURBATION THEORY; PLASMA WAVES; POSITRONS