skip to main content

SciTech ConnectSciTech Connect

Title: The effect of metal-contacts on carbon nanotube for high frequency interconnects and devices

High frequency characterisation of platinum and tungsten contacts on individual multi-walled carbon nanotubes (MWNT) is performed from 10 MHz to 50 GHz. By measuring the scattering parameters of aligned individual MWNTs, we show that metal contacts enhance an inductive response due to the improved MWNT-electrode coupling reducing the capacitive effect. This behaviour is pronounced in the frequency below 10 GHz and strong for tungsten contacts. We explain the inductive response as a result of the interaction of stimulus current with the localized (or defects) states present at the contact region resulting in the current lagging behind the voltage. The results are further supported by direct current measurements that show tungsten to significantly increase carbon nanotube-electrode coupling. The immediate consequence is the reduction of the contact resistance, implying a reduction of electron tunnelling barrier from the electrode to the carbon nanotube.
Authors:
;  [1]
  1. Nano-Scale Transport Physics laboratory and DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, P. Bag 3, Wits 2050, Johannesburg (South Africa)
Publication Date:
OSTI Identifier:
22299760
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Advances; Journal Volume: 4; Journal Issue: 8; Other Information: (c) 2014 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; CARBON NANOTUBES; DEFECTS; DIRECT CURRENT; ELECTRIC POTENTIAL; ELECTRODES; ELECTRONS; GHZ RANGE; INTERACTIONS; MHZ RANGE; PLATINUM; SCATTERING; TUNGSTEN; TUNNEL EFFECT