skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonthermal Lorentzian wake-field effects on collision processes in complex dusty plasmas

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4900645· OSTI ID:22299735
 [1];  [2]
  1. Department of Electronics Engineering, Catholic University of Daegu, Hayang 712-702 (Korea, Republic of)
  2. Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)

The influence of nonthermal Lorentzian wake-field on the electron-dust grain collision is investigated in complex dusty plasmas. The Eikonal method and the effective interaction potential are applied to obtain the Eikonal scattering phase shift, the differential Eikonal collision cross section, and the total Eikonal collision cross section as functions of the collision energy, the impact parameter, the Mach number, and the spectral index of Lorentzian plasma. It is found that the nonthermal effect enhances the Eikonal scattering phase shift and, however, suppresses the Eikonal collision cross section for the electron-dust grain in Lorentzian complex dusty plasmas. It is also found that the Eikonal scattering phase shift decreases with increasing Mach number and spectral index. In addition, the Eikonal collision cross section increases with an increase of the spectral index and Mach number in Lorentzian complex dusty plasmas.

OSTI ID:
22299735
Journal Information:
Physics of Plasmas, Vol. 21, Issue 10; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English