skip to main content

Title: Electronic structures of GeSi nanoislands grown on pit-patterned Si(001) substrate

Patterning pit on Si(001) substrate prior to Ge deposition is an important approach to achieve GeSi nanoislands with high ordering and size uniformity. In present work, the electronic structures of realistic uncapped pyramid, dome, barn and cupola nanoislands grown in (105) pits are systematically investigated by solving Schrödinger equation for heavy-hole, which resorts to inhomogeneous strain distribution and nonlinear composition-dependent band parameters. Uniform, partitioned and equilibrium composition profile (CP) in nanoisland and inverted pyramid structure are simulated separately. We demonstrate the huge impact of composition profile on localization of heavy-hole: wave function of ground state is confined near pit facets for uniform CP, at bottom of nanoisland for partitioned CP and at top of nanoisland for equilibrium CP. Moreover, such localization is gradually compromised by the size effect as pit filling ratio or pit size decreases. The results pave the fundamental guideline of designing nanoislands on pit-patterned substrates for desired applications.
Authors:
;  [1]
  1. State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, P.R.China (China)
Publication Date:
OSTI Identifier:
22299632
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Advances; Journal Volume: 4; Journal Issue: 11; Other Information: (c) 2014 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; DEPOSITION; ELECTRONIC STRUCTURE; GERMANIUM SILICIDES; GROUND STATES; SCHROEDINGER EQUATION; SIMULATION; SPECTROSCOPY; STRAINS; SUBSTRATES; WAVE FUNCTIONS