skip to main content

SciTech ConnectSciTech Connect

Title: Graphene oxide functionalized with methylene blue and its performance in singlet oxygen generation

Graphical abstract: - Highlights: • Adsorption of methylene blue (MB) on graphene oxide (GO). • Characterization of graphene oxide–methylene blue nanocomposite (MB–GO). • Examination of MB–GO efficiency in singlet oxygen generation (SOG). • MB–GO performs higher SOG efficiency than pristine MB. - Abstract: Due to unique electronic, mechanical, optical and structural properties, graphene has shown promising applications in many fields, including biomedicine. One of them is noninvasive anticancer therapy – photodynamic therapy (PDT), where singlet oxygen (SO), generated under the irradiation of light with appropriate wavelengths, kills cancer cells. In this study, authors report graphene oxide (GO) noncovalent functionalization with methylene blue (MB). MB molecules underwent adsorption on the surface of GO. Detailed characterization of the obtained material was carried out with UV–vis spectroscopy, Raman spectroscopy, FT-IR spectroscopy, and confocal laser scanning microscopy. Furthermore, its performance in singlet oxygen generation (SOG) under irradiation of laser with excitation wavelengths of 785 nm was investigated. Interestingly, GO functionalized with MB (MB–GO) showed enhanced efficiency in singlet oxygen generation compared to pristine MB. The efficiency in SOG was detected by photobleaching of 9,10-anthracenediyl-bis(methylene)dimalonic acid (ABMDMA). These results indicate the material is promising in PDT anticancer therapy and further in vitro and in vivomore » studies are required.« less
Authors:
 [1] ; ;  [2] ;  [3] ;  [1]
  1. West Pomeranian University of Technology in Szczecin, Institute of Chemical and Environment Engineering, Pulaskiego 10, 70-322 Szczecin (Poland)
  2. Pomeranian Medical University, Department of General Pathology, Powstańców Wlkp. 72, 70-111 Szczecin (Poland)
  3. Pomeranian Medical University, Department of Pharmacology, Powstańców Wlkp. 72, 70-111 Szczecin (Poland)
Publication Date:
OSTI Identifier:
22290475
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 48; Journal Issue: 7; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ADSORPTION; EFFICIENCY; EXCITATION; GRAPHENE; INFRARED SPECTRA; IRRADIATION; LASERS; METHYLENE BLUE; NANOSTRUCTURES; OXYGEN; RAMAN SPECTROSCOPY; SURFACES; SYNTHESIS