skip to main content

SciTech ConnectSciTech Connect

Title: Unraveling chaotic attractors by complex networks and measurements of stock market complexity

We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel–Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However, developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process.
Authors:
;  [1]
  1. Business School, Sun Yat-Sen University, Guangzhou 510275 (China)
Publication Date:
OSTI Identifier:
22290345
Resource Type:
Journal Article
Resource Relation:
Journal Name: Chaos (Woodbury, N. Y.); Journal Volume: 24; Journal Issue: 1; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICAL METHODS AND COMPUTING; ATTRACTORS; CAPITAL; CHAOS THEORY; MARKET; PRICES