skip to main content

Title: The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures

In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphologicalmore » analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: • We examine influence of the image resolution on μCT-based morphological analysis. • Surface properties influence accuracy of μCT-based morphology of porous structures. • Total porosity was the least sensitive to surface complexity and scan voxel size. • The beam thickness analysis was overestimated by the surface roughness. • Voxel size customization can significantly reduce a cost of the μCT-based analysis.« less
Authors:
 [1] ;  [1] ;  [2] ; ;  [1]
  1. Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium)
  2. (Belgium)
Publication Date:
OSTI Identifier:
22288724
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Characterization; Journal Volume: 87; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ACCURACY; CAT SCANNING; ETCHING; IMAGE PROCESSING; LASERS; OPERATING COST; POROSITY; POROUS MATERIALS; ROUGHNESS; SENSITIVITY; SPATIAL RESOLUTION; THICKNESS