skip to main content

Title: Plasma biomarkers of liver injury and inflammation demonstrate a lack of apoptosis during obstructive cholestasis in mice

Cholestasis is a pathological common component of numerous liver diseases that results in hepatotoxicity, inflammation, and cirrhosis when untreated. While the predominant hypothesis in cholestatic liver injury remains hepatocyte apoptosis due to direct toxicity of hydrophobic bile acid exposure, recent work suggests that the injury occurs through inflammatory necrosis. In order to resolve this controversy, we used novel plasma biomarkers to assess the mechanisms of cell death during early cholestatic liver injury. C57Bl/6 mice underwent bile duct ligation (BDL) for 6–72 h, or sham operation. Another group of mice were given D-galactosamine and endotoxin as a positive control for apoptosis and inflammatory necrosis. Plasma levels of full length cytokeratin-18 (FL-K18), microRNA-122 (miR-122) and high mobility group box-1 protein (HMGB1) increased progressively after BDL with peak levels observed after 48 h. These results indicate extensive cell necrosis after BDL, which is supported by the time course of plasma alanine aminotransferase activities and histology. In contrast, plasma caspase-3 activity, cleaved caspase-3 protein and caspase-cleaved cytokeratin-18 fragments (cK18) were not elevated at any time during BDL suggesting the absence of apoptosis. In contrast, all plasma biomarkers of necrosis and apoptosis were elevated 6 h after Gal/End treatment. In addition, acetylated HMGB1, a markermore » for macrophage and monocyte activation, was increased as early as 12 h but mainly at 48–72 h. However, progressive neutrophil accumulation in the area of necrosis started at 6 h after BDL. In conclusion, these data indicate that early cholestatic liver injury in mice is an inflammatory event, and occurs through necrosis with little evidence for apoptosis. - Highlights: • The mechanism of cell death during cholestasis remains a controversial topic. • Plasma biomarkers offer new insight into cell death after bile duct ligation. • Cytokeratin-18, microRNA-122 and HMGB1 levels implicate necrosis. • Acetylated HMGB1 levels rise late after BDL confirming inflammation. • BDL-induced liver injury involves mainly inflammation and necrosis but no apoptosis.« less
Authors:
 [1] ; ;  [2] ;  [1] ;  [2] ;  [1]
  1. Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)
  2. MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom)
Publication Date:
OSTI Identifier:
22285533
Resource Type:
Journal Article
Resource Relation:
Journal Name: Toxicology and Applied Pharmacology; Journal Volume: 273; Journal Issue: 3; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ALANINES; APOPTOSIS; BILE ACIDS; BILIARY TRACT; BIOLOGICAL MARKERS; INFLAMMATION; INJURIES; LIVER; MACROPHAGES; MICE; MONOCYTES; NECROSIS; TOXICITY