skip to main content

SciTech ConnectSciTech Connect

Title: Structurally distinct polycyclic aromatic hydrocarbons induce differential transcriptional responses in developing zebrafish

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 h post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC–MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genesmore » known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures. - Highlights: • Defined global mRNA expression changes induced by developmental exposure to PAHs • Determined PAH body burdens following developmental exposure • Genes uniquely induced by benz(a)anthracene included targets of the AHR and RELA • Dibenzothiophene and pyrene perturbed a distinct RELA network • Transcriptional networks reveal differential mechanisms of PAH toxicity.« less
Authors:
 [1] ;  [2] ; ;  [1] ;  [2] ;  [1] ;  [2] ;  [1]
  1. Department of Environmental and Molecular Toxicology, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States)
  2. Computational Biology and Bioinformatics, Pacific Northwest National Laboratory (United States)
Publication Date:
OSTI Identifier:
22285458
Resource Type:
Journal Article
Resource Relation:
Journal Name: Toxicology and Applied Pharmacology; Journal Volume: 272; Journal Issue: 3; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ANTHRACENE; BY-PRODUCTS; COMBUSTION; EMBRYOS; FERTILIZATION; GENES; HAZARDS; MALFORMATIONS; MESSENGER-RNA; POLYCYCLIC AROMATIC HYDROCARBONS; PYRENE; RECEPTORS; TOXICITY; TRANSCRIPTION FACTORS