skip to main content

Title: The generation of 4-hydroxynonenal, an electrophilic lipid peroxidation end product, in rabbit cornea organ cultures treated with UVB light and nitrogen mustard

The cornea is highly sensitive to oxidative stress, a process that can lead to lipid peroxidation. Ultraviolet light B (UVB) and nitrogen mustard (mechlorethamine) are corneal toxicants known to induce oxidative stress. Using a rabbit air-lifted corneal organ culture model, the oxidative stress responses to these toxicants in the corneal epithelium was characterized. Treatment of the cornea with UVB (0.5 J/cm{sup 2}) or nitrogen mustard (100 nmol) resulted in the generation of 4-hydroxynonenal (4-HNE), a reactive lipid peroxidation end product. This was associated with increased expression of the antioxidant, heme oxygenase-1 (HO-1). In human corneal epithelial cells in culture, addition of 4-HNE or 9-nitrooleic acid, a reactive nitrolipid formed during nitrosative stress, caused a time-dependent induction of HO-1 mRNA and protein; maximal responses were evident after 10 h with 30 μM 4-HNE or 6 h with 10 μM 9-nitrooleic acid. 4-HNE and 9-nitrooleic acid were also found to activate Erk1/2, JNK and p38 MAP kinases, as well as phosphoinositide-3-kinase (PI3)/Akt. Inhibition of p38 blocked 4-HNE- and 9-nitrooleic acid-induced HO-1 expression. Inhibition of Erk1/2, and to a lesser extent, JNK and PI3K/Akt, suppressed only 4-HNE-induced HO-1, while inhibition of JNK and PI3K/Akt, but not Erk1/2, partly reduced 9-nitrooleic acid-induced HO-1. Thesemore » data indicate that the actions of 4-HNE and 9-nitrooleic acid on corneal epithelial cells are distinct. The sensitivity of corneal epithelial cells to oxidative stress may be an important mechanism mediating tissue injury induced by UVB or nitrogen mustard. - Highlights: • UVB or nitrogen mustard causes rabbit corneal epithelial injury. • 4-Hydroxynonenal (4-HNE) was formed and heme oxygenase-1 (HO-1) was increased. • 4-HNE induced HO-1 mRNA and protein expression in human corneal epithelial cells. • The induction of HO-1 by 4-HNE was through MAP kinase activation.« less
Authors:
; ; ;  [1] ;  [2] ;  [1] ;  [3] ; ;  [1] ;  [4]
  1. Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States)
  2. Environmental Science, New York Medical College, Valhalla, NY (United States)
  3. Pharmaceutics, Rutgers University, Piscataway, NJ (United States)
  4. Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ (United States)
Publication Date:
OSTI Identifier:
22285427
Resource Type:
Journal Article
Resource Relation:
Journal Name: Toxicology and Applied Pharmacology; Journal Volume: 272; Journal Issue: 2; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; CORNEA; EPITHELIUM; HEME; LIPIDS; MESSENGER-RNA; NITROGEN MUSTARD; OXIDATION; RABBITS; STRESSES; TIME DEPENDENCE; TISSUE CULTURES