skip to main content

Title: Comparative developmental toxicity of environmentally relevant oxygenated PAHs

Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are byproducts of combustion and photo-oxidation of parent PAHs. OPAHs are widely present in the environment and pose an unknown hazard to human health. The developing zebrafish was used to evaluate a structurally diverse set of 38 OPAHs for malformation induction, gene expression changes and mitochondrial function. Zebrafish embryos were exposed from 6 to 120 h post fertilization (hpf) to a dilution series of 38 different OPAHs and evaluated for 22 developmental endpoints. AHR activation was determined via CYP1A immunohistochemistry. Phenanthrenequinone (9,10-PHEQ), 1,9-benz-10-anthrone (BEZO), xanthone (XAN), benz(a)anthracene-7,12-dione (7,12-B[a]AQ), and 9,10-anthraquinone (9,10-ANTQ) were evaluated for transcriptional responses at 48 hpf, prior to the onset of malformations. qRT-PCR was conducted for a number of oxidative stress genes, including the glutathione transferase(gst), glutathione peroxidase(gpx), and superoxide dismutase(sod) families. Bioenergetics was assayed to measure in vivo oxidative stress and mitochondrial function in 26 hpf embryos exposed to OPAHs. Hierarchical clustering of the structure-activity outcomes indicated that the most toxic of the OPAHs contained adjacent diones on 6-carbon moieties or terminal, para-diones on multi-ring structures. 5-carbon moieties with adjacent diones were among the least toxic OPAHs while the toxicity of multi-ring structures with more centralized para-diones varied considerably. 9,10-PHEQ, BEZO,more » 7,12-B[a]AQ, and XAN exposures increased expression of several oxidative stress related genes and decreased oxygen consumption rate (OCR), a measurement of mitochondrial respiration. Comprehensive in vivo characterization of 38 structurally diverse OPAHs indicated differential AHR dependency and a prominent role for oxidative stress in the toxicity mechanisms. - Highlights: • OPAHs are byproducts of combustion present in the environment. • OPAHs pose a largely unknown hazard to human health. • We assayed the developmental toxicology of 39 different OPAHs in zebrafish. • The most toxic OPAHs contained adjacent diones or terminal, para-diones. • AHR dependency varied among OPAHs, and oxidative stress influenced their toxicology.« less
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [2] ;  [1]
  1. Department of Environmental and Molecular Toxicology, the Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States)
  2. Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA (United States)
Publication Date:
OSTI Identifier:
22285377
Resource Type:
Journal Article
Resource Relation:
Journal Name: Toxicology and Applied Pharmacology; Journal Volume: 271; Journal Issue: 2; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ANTHRACENE; ANTHRAQUINONES; CARBON; COMBUSTION; GENES; GLUTATHIONE; MALFORMATIONS; MITOCHONDRIA; PEROXIDASES; POLYCYCLIC AROMATIC HYDROCARBONS; PUBLIC HEALTH; RESPIRATION; STRESSES; SUPEROXIDE DISMUTASE; TOXICITY