skip to main content

Title: Reactive oxygen species mediate Cr(VI)-induced carcinogenesis through PI3K/AKT-dependent activation of GSK-3β/β-catenin signaling

Cr(VI) compounds are known human carcinogens that primarily target the lungs. Cr(VI) produces reactive oxygen species (ROS), but the exact effects of ROS on the signaling molecules involved in Cr(VI)-induced carcinogenesis have not been extensively studied. Chronic exposure of human bronchial epithelial cells to Cr(VI) at nanomolar concentrations (10–100 nM) for 3 months not only induced cell transformation, but also increased the potential of these cells to invade and migrate. Injection of Cr(VI)-stimulated cells into nude mice resulted in the formation of tumors. Chronic exposure to Cr(VI) increased levels of intracellular ROS and antiapoptotic proteins. Transfection with catalase or superoxide dismutase (SOD) prevented Cr(VI)-mediated increases in colony formation, cell invasion, migration, and xenograft tumors. While chronic Cr(VI) exposure led to activation of signaling cascades involving PI3K/AKT/GSK-3β/β-catenin and PI3K/AKT/mTOR, transfection with catalase or SOD markedly inhibited Cr(VI)-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the Cr(VI)-mediated increase in total and active β-catenin proteins and colony formation. In particular, Cr(VI) suppressed autophagy of epithelial cells under nutrition deprivation. Furthermore, there was a marked induction of AKT, GSK-3β, β-catenin, mTOR, and carcinogenic markers in tumor tissues formed in mice after injection with Cr(VI)-stimulated cells. Collectively, ourmore » findings suggest that ROS is a key mediator of Cr(VI)-induced carcinogenesis through the activation of PI3K/AKT-dependent GSK-3β/β-catenin signaling and the promotion of cell survival mechanisms via the inhibition of apoptosis and autophagy. - Highlights: • Chronic exposure to Cr(VI) induces carcinogenic properties in BEAS-2B cells. • ROS play an important role in Cr(VI)-induced tumorigenicity of BEAS-2B cells. • PI3K/AKT/GSK-3β/β-catenin signaling involved in Cr(VI) carcinogenesis. • The inhibition of apoptosis and autophagy contributes to Cr(VI) carcinogenesis.« less
Authors:
; ; ; ; ; ; ;  [1] ;  [1] ;  [2] ;  [1]
  1. Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States)
  2. (Korea, Republic of)
Publication Date:
OSTI Identifier:
22285374
Resource Type:
Journal Article
Resource Relation:
Journal Name: Toxicology and Applied Pharmacology; Journal Volume: 271; Journal Issue: 2; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ANOXIA; APOPTOSIS; CARCINOGENESIS; CARCINOGENS; CATALASE; CATTLE; CELL TRANSFORMATIONS; CHRONIC EXPOSURE; COLONY FORMATION; ELECTRON SPIN RESONANCE; GROWTH FACTORS; LUNGS; MICE; NEOPLASMS; OXYGEN; SUPEROXIDE DISMUTASE; TRANSCRIPTION FACTORS