skip to main content

Title: Hypermethylations of RASAL1 and KLOTHO is associated with renal dysfunction in a Chinese population environmentally exposed to cadmium

Exposure to cadmium (Cd) can affect both DNA methylation and renal function, but there are few examples of the association between epigenetic markers and Cd-induced kidney damage. It has been suggested that hypermethylation of the genes RASAL1 and KLOTHO is associated with renal fibrogenesis. To investigate whether hypermethylation of RASAL1 and KLOTHO in peripheral blood DNA can be associated with Cd exposure and/or Cd-induced renal dysfunction, the degrees of methylation of RASAL1 and KLOTHO in peripheral blood DNA from 81 residents in Cd-polluted and non-polluted areas were measured using bisulfate-PCR-pyrosequencing. Changes in blood cadmium (BCd), urinary cadmium (UCd), and kidney parameters were measured, and the glomerular filtration rate (eGFR) was estimated. The levels of BCd and UCd correlated positively with the levels of DNA methylation in RASAL1 and in KLOTHO. The more heavily exposed residents (BCd, 4.23–13.22 μg/L; UCd, 8.65–32.90 μg/g creatinine) exhibited obvious renal dysfunction. Notably, when Cd concentration in blood and urine was adjusted, the increased methylation level in RASAL1 was inversely correlated with eGFR (P < 0.01) but the relationship between hypermethylation of KLOTHO and eGFR was not statistically significant. The methylation of RASAL1 increased along with the increased abnormal prevalence of eGFR. Our findings suggest thatmore » Cd exposure can induce the hypermethylation of RASAL1 and KLOTHO. Hypermethylation of RASAL1 may be an indicator of the progress for chronic kidney disease. - Highlights: • A long term heavily Cd exposure induced renal dysfunction. • Cd exposure correlated positively with DNA methylation in RASAL1 and KLOTHO. • Hypermethylation of RASAL1 correlated with adjusted renal function indicators.« less
Authors:
;  [1] ;  [2] ;  [3] ; ;  [4] ;  [1] ;  [2] ;  [1] ;  [2]
  1. School of Public Health, Fudan University, 130 DongAn Road, Shanghai 200032 (China)
  2. (China)
  3. Department of Epidemiology, School of Public Health, Shanxi Medical University, Shanxi (China)
  4. Department of Bone Metabolism, Institute of Radiation Medicine, Fudan University, Shanghai (China)
Publication Date:
OSTI Identifier:
22285358
Resource Type:
Journal Article
Resource Relation:
Journal Name: Toxicology and Applied Pharmacology; Journal Volume: 271; Journal Issue: 1; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ALBUMINS; BLOOD; CADMIUM; CHINA; CREATININE; DISEASES; DNA; FILTRATION; GENES; KIDNEYS; METHYLATION; URINE