skip to main content

Title: Synthesis and catalytic application of nanofibrous La{sub 0.9}A{sub 0.1}MnO{sub 3} (A = Ca, Cu, Ag) with macroscopic shapes

Graphical abstract: Fabrication of nanofibrous La{sub 0.9}A{sub 0.1}MnO{sub 3} (A = Ca, Cu, Ag) perovskite-type oxides with macroscopic shapes was successfully obtained using carbon nanofibers (CNFs) as templates. Furthermore, their application for the combustion of carbon black (CB), which is a model of particulate matter exhausted from diesel engines, was demonstrated. - Highlights: • Nanofibrous La{sub 0.9}A{sub 0.1}MnO{sub 3} with macroscopic shapes was successfully obtained. • CNFs template method used here is facile, effective and reproducible. • The obtained materials show superior catalytic activity in soot combustion. • The catalytic order is La{sub 0.9}Ag{sub 0.1}MnO{sub 3} > La{sub 0.9}Cu{sub 0.1}MnO{sub 3} > La{sub 0.9}Ca{sub 0.1}MnO{sub 3}. - Abstract: Fabrication of nanofibrous La{sub 0.9}A{sub 0.1}MnO{sub 3} (A = Ca, Cu, Ag) perovskite-type oxides with macroscopic shapes can be successfully obtained by using CNFs as templates. Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) analysis confirmed the template effect and formation of nanofibrous perovskite-type oxides on macroscopic silica fiber. It turned out that it is reliable to control the desired single-phase La{sub 0.9}A{sub 0.1}MnO{sub 3} (A = Ca, Cu, Ag) perovskite-type oxides formation by tuning the corresponding metal ratio during preparation process. Furthermore, it showed that the as-prepared nanofibrous La{submore » 0.9}A{sub 0.1}MnO{sub 3} (A = Ca, Cu, Ag) perovskite-type oxides can greatly decrease the combustion temperature of nanosized carbon black particles, and follows the order of La{sub 0.9}Ag{sub 0.1}MnO{sub 3} > La{sub 0.9}Cu{sub 0.1}MnO{sub 3} > La{sub 0.9}Ca{sub 0.1}MnO{sub 3}, indicating their high potential application prospects in diesel soot particles treatment.« less
Authors:
; ; ;
Publication Date:
OSTI Identifier:
22285176
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 48; Journal Issue: 10; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; CALCIUM; CARBON BLACK; CARBON FIBERS; COMBUSTION; COPPER; DIESEL ENGINES; LANTHANUM; NANOSTRUCTURES; OXIDES; PEROVSKITE; SCANNING ELECTRON MICROSCOPY; SILVER; SYNTHESIS; X-RAY DIFFRACTION