skip to main content

SciTech ConnectSciTech Connect

Title: Retarded hydrolysis-condensing reactivity of tetrabutyl titanate by acetylacetone and the application in dye-sensitized solar cells

Graphical abstract: - Highlights: • Effect of acetone acetyl on coarsening rate of TiO{sub 2} nanocrystallites was studied. • Hydrolysis reactivity of alkoxide was retarded with addition of acetone acetyl. • Coarsening rate of TiO{sub 2} nanocrystallites is retarded with addition of acetone acetyl. • The synthesized TiO{sub 2} sols were utilized in dye sensitized solar cells. • Small particles formed by Ti-complexes were beneficial for device performance. - Abstract: TiO{sub 2} nanocrystallites have been synthesized by hydrothermal reaction using tetrabutyl titanate as source material. Acetylacetone was utilized to modify hydrolysis-condensation behavior of the alkoxide and thus coarsening dynamics of TiO{sub 2} nanocrystallites in the reaction. With assistance of Fourier transformation infrared spectrum, transmission electron microscopy, selected area electron diffraction and X-ray diffraction, interaction between acetylacetone and tetrabutyltitanate was explored, crystallographic and morphological properties of TiO{sub 2} nanocrystallites were monitored. Less hydrolysable complex was formed by “method of chelating” as tetrabutyltitanate was mixed with acetylacetone, leading to retarded coarsening rate of nanocrystallites. The obtained TiO{sub 2} nanocrystallites were applied to fabricate nanoporous photoanode of dye sensitized solar cells. Improvement of 18% has been achieved for photo-to-electric energy conversion efficiency of the devices due to both upgraded open circuit voltage andmore » photocurrent density.« less
Authors:
; ;
Publication Date:
OSTI Identifier:
22285167
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 48; Journal Issue: 10; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ACETONE; ACETYLACETONE; CRYSTAL GROWTH; CRYSTALLOGRAPHY; DYES; ELECTRON DIFFRACTION; HYDROLYSIS; SOLAR CELLS; TITANATES; TITANIUM COMPLEXES; TITANIUM OXIDES; TRANSMISSION ELECTRON MICROSCOPY; X-RAY DIFFRACTION