skip to main content

SciTech ConnectSciTech Connect

Title: Hydrothermal synthesis of SnO{sub 2} nanorods: Morphology dependence, growth mechanism and surface properties

Graphical abstract: - Highlights: • Urchin-like nanorod clusters were synthesized by a facile hydrothermal process. • The influence of synthetic parameters on formation of SnO{sub 2} products was studied. • The growth mechanism of SnO{sub 2} nanorods was proposed from valuable insights. • The surface properties of SnO{sub 2} nanorods were investigated. - Abstract: Uniform tetragonal-shaped SnO{sub 2} nanorods and their urchin-like clusters were successfully synthesized via a template-free hydrothermal process. The resulting nanorods were characterized by power X-ray diffraction (PXRD), field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM), infrared absorption spectra (IR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TG) and ultraviolet–visible (UV–vis) absorption spectra. The influence of precursor, solvent, hydrothermal temperature and treatment time on the formation of SnO{sub 2} nanostructures was investigated. Moreover, the surface properties of SnO{sub 2} nanorods were studied.
Authors:
;
Publication Date:
OSTI Identifier:
22285141
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 48; Journal Issue: 10; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ABSORPTION SPECTRA; CRYSTAL GROWTH; HYDROTHERMAL SYNTHESIS; NANOSTRUCTURES; SURFACE PROPERTIES; THERMAL GRAVIMETRIC ANALYSIS; TIN OXIDES; TRANSMISSION ELECTRON MICROSCOPY; X-RAY DIFFRACTION; X-RAY PHOTOELECTRON SPECTROSCOPY