skip to main content

SciTech ConnectSciTech Connect

Title: Blocking effect of crystal–glass interface in lanthanum doped barium strontium titanate glass–ceramics

Graphical abstract: The blocking effect of the crystal–glass interface on the carrier transport behavior in the lanthanum doped barium strontium titanate glass–ceramics: preparation and characterization. - Highlights: • La{sub 2}O{sub 3} addition promotes the crystallization of the major crystalline phase. • The Z″ and M″ peaks exist a significant mismatch for 0.5 mol% La{sub 2}O{sub 3} addition. • The Z″ and M″ peaks separate obviously for 1.0 mol% La{sub 2}O{sub 3} addition. • Crystallite impedance decreases while crystal–glass interface impedance increases. • La{sub 2}O{sub 3} addition increases blocking factor of the crystal–glass interface. - Abstract: The microstructures and dielectric properties in La{sub 2}O{sub 3}-doped barium strontium titanate glass–ceramics have been investigated by scanning electron microscopy (SEM) and impedance spectroscopy. SEM analysis indicated that La{sub 2}O{sub 3} additive decreases the average crystallite size. Impedance spectroscopy revealed that the positions of Z″ and M″ peaks are close for undoped samples. When La{sub 2}O{sub 3} concentration is 0.5 mol%, the Z″ and M″ peaks show a significant mismatch. Furthermore, these peaks separate obviously for 1.0 mol% La{sub 2}O{sub 3} addition. With increasing La{sub 2}O{sub 3} concentration, the contribution of the crystallite impedance becomes smaller, while the contribution of the crystal–glass interface impedance becomesmore » larger. More interestingly, it was found that La{sub 2}O{sub 3} additive increases blocking factor of the crystal–glass interface in the temperature range of 250–450 °C. This may be attributed to a decrease of activation energy of the crystallite and an increase of the crystal–glass interface area.« less
Authors:
 [1] ;  [1] ;  [2] ;  [1]
  1. Beijing Fine Ceramics Laboratory, State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)
  2. Ferroelectric Laboratory, Institute of Natural Science, Ural Federal University, Ekaterinburg 620000 (Russian Federation)
Publication Date:
OSTI Identifier:
22285109
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 48; Journal Issue: 10; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; BARIUM; CERAMICS; CRYSTALLIZATION; DOPED MATERIALS; IMPEDANCE; LANTHANUM; LANTHANUM OXIDES; MICROSTRUCTURE; SCANNING ELECTRON MICROSCOPY; SPECTROSCOPY; STRONTIUM; TITANATES