skip to main content

SciTech ConnectSciTech Connect

Title: Spherical constituent particles formed by a multistage solution treatment in Al–Zn–Mg–Cu alloys

The corrosion resistance and fracture toughness of Al–Zn–Mg–Cu alloys are greatly affected by the remaining large constituent particles with sharp corners and sharp edges. Here, we show that with a careful high-temperature solution treatment, these constituent particles can be formed into spherical rather than irregular shapes. This results in better corrosion resistance and mechanical properties for the alloys than the conventional solution treatment. The complex microstructures of the formed spherical constituent particles and their formation mechanism were studied using focused ion beam (FIB), scanning transmission electron microscopy (STEM) and selected area electron diffraction (SAED). It was revealed that there are five types of spherical constituent particles formed after the special solution treatment, and each type has its own characteristic microstructural features. - Highlights: • Improved combined mechanical properties obtained by spheroidizing treatment. • Five spherical particles have been found in alloy treated by spheroidizing. • These particles have interesting structures, including quasicrystal, and so on. • It is the first time to observe petal-like η phase formed by solution treatment. • We reported a critical state to decompose the most constituents by spheroidizing.
Authors:
; ; ; ; ; ;
Publication Date:
OSTI Identifier:
22285080
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Characterization; Journal Volume: 83; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ALUMINIUM ALLOYS; CORROSION RESISTANCE; ELECTRON DIFFRACTION; FRACTURE PROPERTIES; ION BEAMS; MICROSTRUCTURE; PARTICLES; SHAPE; SOLUTIONS; TRANSMISSION ELECTRON MICROSCOPY